Reduction of Edge Labeled DAGs through
Constant Folding'

Uwe Naumann, Jean Utke?

We present intermediate results for a discrete problem arising in the auto-

matic generation of derivative code. Consider a directed acyclic graph (dag)
G = (V, E) with vertex set V = XUZUY where X is the set of minimal ver-
tices, Z is the set of intermediate vertices, Y is the set of maximal vertices,
and F is the set of edges (4,7) with 4,5 € V. X, Y, and Z are pairwise dis-
joint. The vertices are numbered such that they induce a dependency order,
(4,j) € E =i < j. Each edge (7, 7) is annotated with a label ¢;; € R. The ¢j;
can be categorized as either variable or constant. G is transformed into a bi-
partite graph by using a sequence o of edge (front and back) and vertex elimi-
nations.
Figure 1 illustrates the elimination
techniques and the corresponding
operations on the cj; for a dag with
X ={1,2}, Z = {3}, Y = {4,5}.
This transformation of G into bipar-
tite form represents the accumula-
tion of a Jacobian in the context of
automatic differentiation [1] where
G is a computational graph and the cj; are local partial derivatives. Details
on the elimination techniques can be found in [4]. The cost of an elimina-
tion sequence o can be measured as the number M of scalar multiplications
performed. The objective is to find a ¢ that minimizes the cost, that is,
M = M(G). There is no known polynomial algorithm that solves this prob-
lem in general, necessitating the use of often costly heuristics [2].

Let S; ={j eV :(i,j) € E} and P; = {i € V : (i,j) € E}. A path
pij is a sequence of vertices (i = ki,...,k = j) such that (k,,k,41) € E
for v=1,...,1 — 1. We define an X-j-separating vertex set X; such that
all paths p;; for any ¢ € X contain a k¥ € X;. The following algorithm
transforms single expression use (seu) dags G defined by |S;] = 1:Vi € Z

Figure 1: (a) G, (b) G-3, (c) G—(1,3)
(front) (d) G — (3,4) (back)

!This work was supported by the Mathematical, Information, and Computational Sci-
ences Division subprogram of the Office of Advanced Scientific Computing Research, Office
of Science, U.S. Department of Energy, under Contract W-31-109-ENG-38 and by the Na-
tional Science Foundation’s Information Technology Research Program under Contract
OCE-0205590, “Adjoint Compiler Technology & Standards” (ACTS).

2Mathematics and Computer Science Division, Argonne National Laboratory, 9700
South Cass Avenue, Argonne, IL 60439-4844, USA; {naumann|utke}@mecs.anl.gov

into bipartite form.

Algorithm 1 (elimination) For a given G do the following.
(1)Vj € Z in dependency order

(a) Compute a minimal X -j-separating vertex set X;.

(b) If | X| < |Pj|, then generate the bipartite subgraph

G ={UtuX;,{(64) i € X;})
by vertex elimination in reverse dependency order.
(2) Eliminate the remaining vertices € Z in reverse dependency order.

The effect of Algorithm 1 is that all intermediate j € Z are eliminated at
their lowest possible cost |X;|. It is a generalization of the respective algo-
rithm introduced in [5]. Without formal proof we propose that Algorithm 1
yields M (G) for seu-dags.

Until now we have not made a distinction between operations involving
variable vs. constant labels cj;. For the constant c;; we distinguish trivial
edges (¢j; = 1) and the remaining invariant edges (cj; = const). Those
can yield trivial multiplications by 41 or multiplications of two constants.

We refine the objective by allowing to discount such trivial multiplica-
tions. The complexity of any known algorithm for approximating optimal
elimination sequences depends on |FE|. Thus the effort can be lowered by
reducing the size of G. We refer to this size reduction as constant folding.
It needs to preserve optimality, that is, for the reduced graph G, we must
get M (G,) < M(G). For seu-dags we propose the following algorithm.

Algorithm 2 (seu constant folding) For a given G do the following.
(1) Back eliminate all trivial edges.

(2) Back eliminate (j,k) if (j,k) and (i, 7) are invariant Vi € P;.

(3) Front eliminate all trivial edges (i,7) if |Pj| =1 or S; C Y.

Algorithm 2 can be proven to preserve optimality for seu-dags. It is not
necessarily optimal for general dags as illustrated in Figure 2. Not counting
trivial multiplications by one, the back elimination of the trivial edges (4, 3)
and (5,3) in (b) leads to an additional multiplication that is avoided in (c).
Similar observations can be made for the other steps leading to the following
modification for a general dag G' that only imposes the single expression use
property locally as a prerequisite for the respective target vertices of the
edges to be eliminated.

Algorithm 3 (constant folding) For a given G do the following.
(1) Back eliminate all trivial edges (i,75) if |Si| =1 or |P| =1AP; C X.

(2) Eliminate j if (i,7) and (j, k) are invariant for all i € P; and k € S;

and (|S;| =1V |Pj| =1).

(3) Front eliminate all trivial edges (i,j) if |Pj| =1 or |S;|=1AS5; CY

The refinement of Algorithm 3 is the subject of ongoing research.

All algorithms proposed here have their

http://www.autodiff.org/ACTS. This col-
laborative effort between MIT, Rice University,

@ practical application in the ACTS project, see
91 (b) (C)

Figure 2: non-seu scenario

and University of Chicago / Argonne National
Laboratory covers algorithmic research in the
field of automatic differentiation. Ome of the
objectives is the development of a toolset that

implements these algorithms in order to automatically generate an efficient
adjoint of the MIT general circulation model [3].

The submitted manuscript has been created by
the University of Chicago as Operator of Ar-
gonne National Laboratory (”Argonne”) under
Contract No. W-31-109-ENG-38 with the U.S.
Department of Energy. The U.S. Government
retains for itself, and others acting on its behalf,
a paid-up, nonexclusive, irrevocable worldwide
license in said article to reproduce, prepare
derivative works, distribute copies to the pub-
lic, and perform publicly and display publicly,
by or on behalf of the Government.

References

[1]

A. Griewank. Fwaluating Derivatives: Principles and Techniques of Al-
gorithmic Differentiation. Number 19 in Frontiers in Appl. Math. STAM,
Philadelphia, 2000.

A. Griewank and S. Reese. On the calculation of Jacobian matrices by
the Markowitz rule. In Andreas Griewank and George F. Corliss, editors,
Automatic Differentiation of Algorithms: Theory, Implementation, and
Application, pages 126—135. STAM, Philadelphia, 1991.

J. Marotzke, R. Giering, K. Zhang, D. Stammer, C. Hill, and T. Lee.
Construction of the adjoint MIT ocean general circulation model and

application to atlantic heat transport variability. Journal of Geophysical
Research, 104, C12:29,529-29,547, 1999.

Uwe Naumann. Optimal accumulation of Jacobian matrices by elim-
ination methods on the dual computational graph. Preprint ANL-
MCS/P943-0402, Argonne National Laboratory, 2002. To appear in
Math. Prog., Springer.

Uwe Naumann. Statement level optimality of tangent-linear and adjoint
models. Preprint ANL-MCS/P1066-0603, Argonne National Laboratory,
2003. Submitted to SODA '04.

